ON GENERALIZED SINE AND COSINE FUNCTIONS
نویسندگان
چکیده
منابع مشابه
Discrete Cosine and Sine Transforms Generalized to Honeycomb Lattice
The discrete cosine and sine transforms are generalized to a triangular fragment of the honeycomb lattice. The two-variable orbit functions of the Weyl group A2, discretized simultaneously on the weight and root lattices, induce the family of the extended Weyl orbit functions. The periodicity and von Neumann and Dirichlet boundary properties of the extended Weyl orbit functions are detailed. Th...
متن کاملLocal Sine and Cosine Bases
19 and = 1 + 1 m ; m a positive integer. If we let w(x) 1 p 2 R 1 ?1 e ixx ()dd, then w is a \mother function" that generates a wavelet basis (giving us a Multi Resolution Analysis) m ; m a positive integer. x6. Concluding remarks. We repeat that the local bases we developed in x2. were introduced by Coifman and Meyer, and their use in obtaining the smooth wavelet bases were pointed out to us b...
متن کاملFractional Cosine and Sine Transforms
The fractional cosine and sine transforms – closely related to the fractional Fourier transform, which is now actively used in optics and signal processing – are introduced and their main properties and possible applications are discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demonstratio Mathematica
سال: 1995
ISSN: 2391-4661
DOI: 10.1515/dema-1995-0205